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Abstract

Machine translation systems are very sen-
sitive to the domains they were trained
on. Several domain adaptation techniques
have already been deeply studied. We
propose a new technique for neural ma-
chine translation (NMT) that we call do-
main control which is performed at run-
time using a unique neural network cover-
ing multiple domains. The presented ap-
proach shows quality improvements when
compared to dedicated domains translat-
ing on any of the covered domains and
even on out-of-domain data. In addition,
model parameters do not need to be re-
estimated for each domain, making this
effective to real use cases. Evaluation is
carried out on English-to-French transla-
tion for two different testing scenarios. We
first consider the case where an end-user
performs translations on a known domain.
Secondly, we consider the scenario where
the domain is not known and predicted at
the sentence level before translating. Re-
sults show consistent accuracy improve-
ments for both conditions.

1 Introduction

Machine translation systems are very sensitive to
the domain(s) they were trained on because each
domain has its own style, sentence structure and
terminology. There is often a mismatch between
the domain for which training data are available
and the target domain of a machine translation sys-
tem. If there is a strong deviation between train-
ing and testing data, translation quality will be dra-
matically deteriorated. Word ambiguities are often
an issue for machine translation systems. For in-
stance, the English word "administer" has to be

translated differently if it appears in medical or
political contexts. Our work is motivated by the
idea that neural models could benefit from having
domain information to choose the most appropri-
ate terminology and sentence structure while using
the information from all the domains to improve
the base translation quality. Recently, (Sennrich
et al., 2016) report on the neural network ability
to control politeness through side constraints. We
extend this idea to domain control. Our goal is to
allow a model built from a diverse set of training
data to produce in-domain translations. This is,
to extend the coverage of generic NMT models to
specific domains, with their specialized terminol-
ogy and style, without lowering translation quality
on more generic data. We present two frameworks
to feed domain meta-information on the NMT en-
coder side.

The paper is structured as follows: Section 2
overviews related work. Details of our neural MT
engine are given in Section 3. Section 4 describes
the proposed approach. Experiments and results
are detailed in Section 5. Finally, conclusions and
further work are drawn in Section 6.

2 Related Work

A lot of work has already been done for domain
adaptation in Statistical Machine Translation. The
approaches vary from in-domain data selection
based methods (Hildebrand et al., 2005) (Moore
and Lewis, 2010) (Sethy et al., 2006) to in-domain
models mixture-based methods (Foster and Kuhn,
2007) (Koehn and Schroeder, 2007) (Schwenk and
Koehn, 2008).

Recent works have especially dealt with do-
main adaptation for NMT by providing meta-
information to the Neural Network. Our work is in
line with this kind of approach. (Chen et al., 2016)
feeds Neural Network with topic information on
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Figure 1: Schematic view of our NMT system.

the decoder side; topics are numerous and con-
sist in human-labeled product categories. (Zhang
et al., 2016) includes topic modeling on both en-
coder and decoder sides. A given number of topics
are automatically inferred from the training data
using Latent Dirichlet Allocation; each word in a
sentence is assigned its own vector of topics. In
our work, we also provide meta-information about
domain to the network. However, we introduce
domain information at the sentence level. (Luong
and Manning, 2015) adapt a generic NMT net-
work (trained on out-of-domain data) by running
additional training iterations over an in-domain
data set. The authors claim to obtain a domain
adapted model in a very limited training time.
However, it differs from our work since we aim
at performing domain-adapted translations using a
unique network that covers multiple domains.

3 Neural MT

Our NMT system follows the architecture pre-
sented in (Bahdanau et al., 2014). It is imple-
mented as an encoder-decoder network with mul-
tiple layers of a RNN with Long Short-Term Mem-
ory hidden units (Zaremba et al., 2014). Figure 1
illustrates an schematic view of the MT network.

Source words are first mapped to word vectors
and then fed into a bidirectional recurrent neu-
ral network (RNN) that reads an input sequence
s = (s1, ..., sJ). Upon seeing the <eos> sym-
bol, the final time step initialises a target RNN.

The decoder is a RNN that predicts a target se-
quence t = (t1, ..., tI), being J and I respectively
the source and target sentence lengths. Translation
is finished when the decoder predicts the <eos>
symbol.

The left-hand side of the figure illustrates the
bidirectional encoder, which actually consists of
two independent LSTM encoders: one encoding
the normal sequence (solid lines) that calculates
a forward sequence of hidden states (

−→
h1, ...,

−→
hJ),

the second encoder reads the input sequence in re-
versed order (dotted lines) and calculates the back-
ward sequence (

←−
h1, ...,

←−
hJ). The final encoder out-

puts (h1, ..., hJ) consist of the sum of both en-
coders final outputs. The right-hand side of the
figure illustrates the RNN decoder. Each word ti
is predicted based on a recurrent hidden state hi

and a context vector ci that aims at capturing rele-
vant source-side information.

Figure 2 illustrates the attention layer; it imple-
ments the "general" attentional architecture from
(Luong et al., 2015). The idea of a global atten-
tional model is to consider all the hidden states of
the encoder when deriving the context vector ct.
Hence, global alignment weights at are derived by
comparing the current target hidden state ht with
each source hidden state hs:

at(s) =
exp(score(ht, hs))∑
s′ exp(score(ht, hs′))
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with the content-based score function:

score(ht, hs) = hT
t Wahs

Given the alignment vector as weights, the con-
text vector ct is computed as the weighted average
over all the source hidden states.

Figure 2: Attention layer of the NMT system.

The framework is available on the open-source
project seq2seq-attn1. More details about
our system can be found in (Crego et al., 2016).

4 Domain control

Two different techniques are implemented to inte-
grate domain control: additional token and domain
feature.

4.1 Additional Token

The additional token method, inspired by the po-
liteness control technique detailed in (Sennrich
et al., 2016) consists in adding an artificial token at
the end of each source sentence in order to let the
network pay attention to the domain of each sen-
tence pair. For instance, consider the next English-
French translation:

Src: Headache may be experienced

Tgt: Des céphalées peuvent survenir

The network reads off the sentence pair with the
appropriate Medical domain tag @MED@:

Src: Headache may be experienced @MED@

Tgt: Des céphalées peuvent survenir

1http://nlp.seas.harvard.edu

Domain tags are appropriately selected in order
to avoid overlaps with words present in the source
language vocabulary. This method, though simple,
has already proven to be effective to control the
politeness level of a translation (Sennrich et al.,
2016), or to support multi-lingual NMT models
(Johnson et al., 2016).

4.2 Word Feature

We present a second technique to introduce do-
main control in our neural translation model. We
use word-level features as described in (Crego
et al., 2016). The first layer of the network is the
word embedding layer. We adapt this layer to ex-
tend each word embedding with an arbitrary num-
ber of cells, designed to encode domain informa-
tion. Notice that using additional features does not
increase the vocabulary of source words; there are
separate vocabularies for words and domain tags.
Figure 3 illustrates a word embedding layer ex-
tended with domain information.

Figure 3: Word embedding layer for word wj ex-
tended with domain label d, which constitutes a
new input sj for the encoder

Following with the example of Section 4.1, the
sentence pair is given to the network with the ap-
propriate Medical domain tag on each source word
as follows:

Src: Headache may be experienced

MED MED MED MED

Tgt: Des céphalées peuvent survenir

Note that under this feature framework, the
sentence-level domain information is added on a
word-by-word basis to all the words in a sentence.
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Domain Lines Src words Tgt words Lines Src words Tgt words
Train Test

IT 399k 6.0M 7.3M 2k 36,8k 45,1k
Literature 35k 881k 943k 2k 50.1k 54.0k
Medical 923k 10.5M 12.3M 2k 35.6k 43.0k
News 194k 5.4M 6.7M 2k 53.5k 66.4k
Parliamentary 1.6M 37.6M 43.8M 2k 40.7k 49.4k
Tourism 1.1M 23.3M 27.5M 2k 39.1k 45.5k
Total 4,3M 83,7M 98.5M

Table 1: Statistics for training and test sets of each domain corpus. Note that k stand for thousands and
M for millions.

We reuse an existing framework that was origi-
nally implemented to include linguistic features at
the word level (Crego et al., 2016).

5 Experiments

We evaluate the presented approach on English-to-
French translation. Section 5.1 describes the data
used for the experiments and details training con-
figurations. Finally, Section 5.2 reports on transla-
tion accuracy results.

5.1 Training Details

We used training corpora covering six different
domains: IT, Literature, Medical, News, Parlia-
mentary and Tourism. Medical, News, Parlia-
mentary data come from public corpora (respec-
tively EMEA, News Commentary and Europarl),
available from the OPUS repository (Tiedemann,
2012). IT, Literature and Tourism are proprietary
data. Statistics of the corpora used are given in
Table 1.

All experiments employ the NMT system de-
tailed in Section 3 and are performed on NVidia
GeForce GTX 1080. We use BPE2 with a total
of 32, 000 source and target tokens as vocabulary,
computed over the entire training corpora. Word
embedding size is 500 cells. During training, we
use stochastic gradient descent, a minibatch size
of 64 with dropout probability set to 0.3 and bidi-
rectional RNN. We train our models for 18 epochs.
Learning rate is set to 1 and starts decaying after
epoch 10 by 0.5. It takes about 10 days to train
models on the complete training data set (4, 3M
sentence pairs).

Four different training configurations are con-
sidered. The first includes six in-domain NMT

2https://github.com/rsennrich/
subword-nmt

models. Each model is trained using its corre-
sponding domain data set (henceforth Single mod-
els). The Join network configuration is built using
all the training data after concatenation. Note that
this model does not include any information about
domain. A Token network is also trained using all
the available training data. It includes domain in-
formation through the additional token approach
detailed in Section 4.1. Finally, Feature network is
also trained on all available training data, it intro-
duces domain information in the model by means
of the feature framework detailed in Section 4.2.

5.2 Results

Table 2 shows translation accuracy results for the
different training configurations. Accuracies are
measured using BLEU3. As expected, the Join
model outperforms all Single models on their cor-
responding test sets, showing that NMT engines
benefit from additional training data. Differences
in accuracy are lower for domains with a higher
representation in the Join model, like Parliamen-
tary and Tourism. No domain information is used
on these first configurations (none).

Results for models incorporating domain infor-
mation are detailed in columns Token and Feature.
Oracle experiments indicate that the test set do-
mains are known in advance, thus allowing to use
the correct side-constraint. The additional token
approach gives mixed results; it improves transla-
tion quality on some tasks and degrades on some
others compared to the Join model. On the con-
trary, incorporating domain information through
the Feature approach consistently improves trans-
lation quality on all the tasks. Adding domain in-
formation on all the source words seems to be a
good technique to convey domain side-constraint

3multi-bleu.perl
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Domain Single Join Token Feature Feature
Constraint None Oracle RNN Acc (%)

IT 52.73 53.81 53.76 54.56 (+0.75) 54.42 97.8
Literature 20.25 29.81 29.96 30.73 (+0.92) 30.71 93.1
Medical 33.97 41.83 42.02 42.51 (+0.68) 42.34 89.4

News 29.70 33.83 34.47 34.61 (+0.78) 34.49 88.3
Parliamentary 37.34 37.53 37.13 37.79 (+0.26) 37.77 82.7

Tourism 37.05 37.46 37.72 38.30 (+0.84) 38.01 90.6
Dialogs 19.25 19.55

Table 2: BLEU scores for the different systems and RNN-based domain classifier accuracy.

Src: Your doctor’s instructions should be carefully observed .
Ref: Vous devrez respecter scrupuleusement les instructions de votre médecin .
Join: Les instructions de votre médecin doivent être soigneusement surveillées .
Feature: Les instructions de votre médecin doivent être suivies attentivement .
Src: All injections of Macugen will be administered by your doctor.
Ref: Toutes les injections de Macugen doivent être réalisées par votre médecin.
Join: Toutes les injections de Macugen seront à l’ordre du jour de votre médecin.
Feature: Toutes les injections de Macugen seront effectuées par votre médecin.

Table 3: Translation examples of in-domain medical sentences with and without domain feature

and to improve NMT target words choice consis-
tency. Differences between the Feature and Join
configurations are shown in parentheses. Note that
an average improvement of 0.80 is observed on all
test sets with the exception of Parliamentary trans-
lations, for which accuracy was only improved by
0.26. This can be explained by the fact that Par-
liamentary is the best represented domain in Join
training set.

Translation examples are shown in Table 3 in
a medical context. They show the impact on do-
main adaptation introduced by the Feature ap-
proach. The first example shows the preference
of the Feature model for the French translation
suivies attentivement of the English carefully ob-
served. It seems more suitable than the hypoth-
esis soigneusement surveillées output by the Join

model. A similar effect is shown on the second
example where the French effectuées is clearly
more adapted as translation of administered than
à l’ordre du jour.

Finally, we also evaluate the ability of our
presented approach (Feature) to face test sets
for which the domain is not known in advance.
Hence, before translation, the domain tag is auto-
matically detected using an in-house domain clas-
sification module based on Recurrent Neural Net-
works (RNN) to disambiguate between the six dif-
ferent domains. The tool predicts the domain on a
sentence-by-sentence basis, then translation is car-
ried out using the predicted domain value in Fea-
ture model. Last column of Table 2 shows the ac-
curacy of the domain classification tool for sen-
tences on each of the predefined domains.

Test Domain feature
IT Literature Medical News Parl. Tourism

IT 54.56 -12.76 -10.25 -12.43 -13.83 -14.18
Literature -5.96 30.73 -5.13 -2.89 -3.50 -3.03
Medical -4.82 -6.23 42.51 -5.06 -5.39 -4.74
News -3.36 -1.58 -3.04 34.61 -0.81 -2.48
Parliamentary -4.14 -1.92 -3.09 -0.39 37.79 -3.01
Tourism -6.72 -3.2 -4.16 -4.26 -4.35 38.30

Table 4: BLEU score decreases using different predefined domain tags
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Results for this last condition are shown in col-
umn RNN. Event though domain is wrongly pre-
dicted in some cases, translation accuracy is still
improved when compared to the Join model. No-
tice that domain classification at sentence level is
a challenging task as short context is considered.
We also confront our approach with a final test
set from a brand new domain, Dialogs, that is not
present in our training data. Sentences are selected
from TED Talks corpora. The RNN toolkit is able
to assign each test sentence to one of the source
domains, leading to outperform the Join model.

In order to better understand the influence of the
predicted domain, we conduct a final set of exper-
iments. Using the Feature model, we run each test
set using all domain values. Results are detailed
in Table 4 showing that translation quality can sig-
nificantly be degraded when translating sentences
with the wrong domain tag. It is especially the
case for IT domain, where translating with the
wrong domain tag dramatically reduces accuracy.
Results also reveal proximities between different
domains like, for example, News and Parliamen-
tary. Translating the News test set with the Par-
liamentary domain tag (and vice versa) does not
seem to hurt translation quality compared to other
domain tag mismatches.

6 Conclusions and Further Work

We have presented a method that incorporates do-
main information into a neural network. It allows
to perform domain-adapted translations using a
unique network that covers multiple domains. The
presented method does not need to re-estimate
model parameters when performing translations
on any of the available domains.

We plan to further improve the feature tech-
nique detailed in this work. Rather than providing
the network with a hard decision about domain,
we want to introduce a vector of distance values
of the given source sentence to each domain, thus
allowing to smooth the proximity of each sentence
to each domain.

Additionally, Table 4 shows indirectly that the
neural network has learnt the ability to classify
domains at the sentence level. We also plan to
implement a joint approach for domain classifica-
tion and translation, avoiding dependency with the
RNN classifier.

Finally, since domain classification is a docu-
ment level task, it would be interesting to extend

the current study to document level translation.
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