
Proceedings of Recent Advances in Natural Language Processing, pages 1169–1175,
Varna, Bulgaria, Sep 2–4, 2019.

https://doi.org/10.26615/978-954-452-056-4_134

1169

Comparison of Machine Learning Approaches for Industry Classification
Based on Textual Descriptions of Companies

Andrey Tagarev1 and Nikola Tulechki1 and Svetla Boytcheva1,2

1Sirma AI trading as Ontotext, Bulgara
2Institute of Information and Communication Technologies,

Bulgarian Academy of Sciences
{andrey.tagarev,nikola.tulechki,svetla.boytcheva}@ontotext.com

Abstract

This paper addresses the task of catego-
rizing companies within industry classi-
fication schemes. The dataset consists
of encyclopedic articles about companies
and their economic activities. The tar-
get classification schema is build by map-
ping linked open data in a semi-supervised
manner. Target classes are built bottom-up
from DBpedia. We apply several state of
the art text classification techniques, based
both on deep learning and classical vector-
space models.

1 Motivation

The era of big data has made the task of integrat-
ing several heterogeneous sources quite common
and important. This is a challenging task because,
typically, data representation of the same object
can significantly differ in different sources, both
in level of detail and type of available informa-
tion. In addition, different ontologies (classifica-
tion schema) are used for the same concepts in dif-
ferent datasets. Ontology mapping is itself a chal-
lenge even for human experts. Thus the problem
of concept classification is very important in data
integration.

This paper presents a comparison of different
techniques for solving the task of company indus-
try classification based on textual descriptions of
companies in DBpedia1. The problem of text-
classification is defined as follows: for a collection
of company descriptions D = {d1, d2, ..., dn},
assign one or more industry categories to each
company from a discrete set of labels C =
{c1, c2, ..., ck}.

There are more than fifteen different com-
pany industry classifications of varying granu-

1https://wiki.dbpedia.org

larity. Some of the most popular are: Indus-
try Classification Benchmark (ICB)2, Global In-
dustry Classification Standard (GICS)3, Thomson
Reuters Business Classification (TRBC)4, and In-
ternational Standard Industrial Classification of
All Economic Activities (ISIC)5.

2 Text Classification Methods

Text classification methods are widely used in sev-
eral applications like e-mail spam filtering (Youn
and McLeod, 2007), news categorization (Lin and
Hauptmann, 2002), in marketing for product re-
views (Dang et al., 2009), etc.

The classical methods (Aggarwal and Zhai,
2012) in text classification are based on standard
techniques. Usually the texts from the training
corpus are transformed into vectors, where distinct
words represent features. One of the simplest and
most efficient methods is the probabilistic classi-
fier Naı̈ve Bayes (NB) that has really good per-
formance even with few examples and sparse fea-
tures and works with a ”naı̈ve” assumption for at-
tributes that are conditionally independent. How-
ever, usually not all words in a text are indepen-
dent. Many techniques have been developed (Al-
Aidaroos et al., 2010) to overcome the problems
caused by the existence of attribute correlations
that can lead to classification bias and negatively
affect an NB classifier’s performance. McCallum
and Nigam (McCallum et al., 1998) demonstrate
NB classifier applied on ”Industry Sector” data,
that contains 6,440 company web pages classified
in a hierarchy of 71 industry sectors, with a vo-

2https://www.ftserussell.com/data/
industry-classification-benchmark-icb

3https://www.msci.com/gics
4https://www.refinitiv.com/

en/financial-data/indices/
trbc-business-classification

5https://unstats.un.org/unsd/
publication/seriesM/seriesm_4rev4e.pdf

https://wiki.dbpedia.org
https://www.ftserussell.com/data/industry-classification-benchmark-icb
https://www.ftserussell.com/data/industry-classification-benchmark-icb
https://www.msci.com/gics
https://www.refinitiv.com/en/financial-data/indices/trbc-business-classification
https://www.refinitiv.com/en/financial-data/indices/trbc-business-classification
https://www.refinitiv.com/en/financial-data/indices/trbc-business-classification
 https://unstats.un.org/unsd/publication/seriesM/seriesm_4rev4e.pdf
 https://unstats.un.org/unsd/publication/seriesM/seriesm_4rev4e.pdf


1170

cabulary of size 29,964. The reported results for
multinomial NB classifier for 20,000 words reach
accuracy up to 0.74, and for 1,000 words mul-
tivariate Bernoulli model reaches accuracy up to
0.46. Frank and Bouckaert (Frank and Bouck-
aert, 2006) propose a solution based on multino-
mial NB that deals with the problem of unbalanced
class sizes in Industry Sector dataset with 105
classes, where the largest category has 102 docu-
ments, the smallest has 27. They show how by us-
ing a centroid classifier and taking into account the
significance of different industry sectors classes
this method achieves significant gain in some cat-
egories. Maximum Entropy classifier used on In-
dustry sector dataset (Nigam et al., 1999) shows
better performance than NB and reaches a higher
accuracy of 0.788. Ghani (Ghani, 2000) uses an
error-correcting codes method and achieves an ac-
curacy up to 0.886 for Industry Sector dataset with
a vocabulary size of 10,000.

Support Vector Machines (SVM) (Joachims,
1998) are linear classifiers that, like NB, do not
require large training datasets but need more com-
putational time. The most important advantage of
SVMs is that they have good performance even for
a high dimensional space, such as text classifica-
tion, where dimensions can be well over 10,000.
Rennie and Rifkin (Rennie and Rifkin, 2001) pro-
pose application of SVM using one-vs-all and
error-correcting output coding for Industry Sector
dataset and the results show that this method sig-
nificantly outperforms NB.

Logistic regression (Genkin et al., 2007) is quite
efficient in cases where the dimensions of the fea-
ture space surpass the total number of training ex-
amples, which is typically the case for text classi-
fication datasets.

k-Nearest Neighbor (kNN) Classification
method is a proximity-based classifiers that uses
distance-based measures for classification task.
Usually, such methods use all features in the vec-
tor space model which can cause lack of efficiency
as not all of them are useful. Several methods for
features selection are used, mainly based on the
weight of the words in the text. To overcome this
problem some modifications of kNN classifier
for text documents were proposed, like Weight
Adjusted k-Nearest Neighbor Classification (Han
et al., 2001). Trstenjak et al.. 2014 present a
method for text classification based on kNN and
Term frequency inverse document frequency

(TF-IDF). Tan (Tan, 2006) demonstrates the per-
formance of kNN and DragPushing strategy based
KNN classifier (DPSKNN) methods over subset
of 48 sectors of Industry sector dataset (Sector-48
dataset). The Micro-F1 of kNN classifier for
Sector-48 dataset is 0.8188 and its Macro-F1 is
0.8235. While DPSKNN shows slightly better
performance with for Sector-48 dataset with
Micro-F1 0.8544 and Macro-F1 0.8585. In order
to emphasize the performance of the methods on
common and rare classes, special averages of F1
scores over different classes are used- Micro-F1
- F1 over categories and documents; Macro-F1 -
average of within-category F1 values.

Other classification techniques, like Random
Forests (Xu et al., 2012), Decision Tree Classifiers
(Harrag et al., 2009), Rule–based classifiers, and
Conditional Random Fields (CRF) (Lafferty et al.,
2001) are also used for this task.

Recent advances in Deep Learning and Trans-
fer Learning introduce more complex methods
(Kowsari et al., 2019) with significantly better per-
formance on solving the multi-class multi-label
task for industry sectors.

One of the breakthroughs in the area was done
by word2vec (Mikolov et al., 2013) that proposes
an efficient method for continuous semantics vec-
tor representation of words (continuous bag-of-
words (CBOW) and skip-grams), by learning from
a huge dataset with billions of words. Although its
primary purpose is not directly related to text clas-
sification, word2vec was used as stepping stone
for many other algorithms, because pre-trained
word representations are widely used in deep con-
textual models for word embeddings.

Some more advanced models, like Glove (Pen-
nington et al., 2014) for word representations were
proposed, based on so called Global vectors - a
new global log-bilinear regression model, where
the learning is based on non-zero elements in
word-word co-occurrence matrix.

The ELMo (Embeddings from Language Mod-
els) (Peters et al., 2018) representation uses deep
bidirectional language model (biLM), where each
token is assigned a representation which is a func-
tion for the whole input sentence.

Skip-thought unsupervised learning model
(Kiros et al., 2015) is a generic, distributed
sentence encoder that uses robust sentences
representation in skip-thought vectors. It uses the
idea of continuation of the information in the text



1171

and for an encoded sentence, it tries to reconstruct
its surrounding sentences.

Because our dataset is based on DBpedia, the
performance of neural networks (NN) algorithms
over it for text-based classification task is of pri-
mary interest for us.

One of the latest algorithms XLNet (Yang et al.,
2019) demonstrates the best performance for DB-
pedia with error 0.62. Where ”classification er-
ror” is defined as 1.0 minus classification accu-
racy. XLNet incorporates ideas from Transformer-
XL (Dai et al., 2019). The main advantage of
Transformer-XL(Dai et al., 2019) is that it allows
the capture of longer-term dependencies and re-
solves context fragmentation problem.

Other methods with comparable results are Uni-
versal Language Model Fine-tuning (ULMFiT),
(Howard and Ruder, 2018) with error 0.8 for DB-
pedia dataset.

Although deep learning algorithms show signif-
icant improvement in accuracy they require huge
amount of labeled training examples and are com-
putationally expensive in comparison to classical
algorithms which do not need such large training
datasets.

Some semi-supervised methods (Johnson and
Zhang, 2016), (Sachan et al., 2019) and unsu-
pervised methods (Xie et al., 2019) have been
proposed for use in combination with supervised
models to improve their performance. For exam-
ple, combination BERTLarge+UDA of Unsuper-
vised Data Augmentation (UDA) (Xie et al., 2019)
and BERT (Devlin et al., 2018) demonstrate er-
ror 1.09 for text classification for DBpedia. The
state-of-the-art (SOTA) BERTLarge’s error for
the DBpedia is 0.64.

In this study we will compare the performance
of some deep learning and transfer learning algo-
rithms over DBpedia companies descriptions. We
will present experiments with ULMfit and Glove
to a baselines of one-hot unigram and one-hot bi-
gram models. These methods were chosen be-
cause they are not so computationally expensive
in comparison with the others and will serve as a
baseline to exploit the potential of the deep learn-
ing approach for text-based classification of indus-
try sectors.

3 Dataset

The dataset6 we used for the experiments is
encyclopedic data, consisting of approximately
300,000 textual descriptions of organizations and
a classification based on DBPedia classes, which
itself is based on Wikipedia. The descriptions are
simply the English language abstracts7 of the the
Wikipedia articles about the organizations, and are
thus relatively homogeneous in size and style. The
Industries classification is based on the nature of
organization’s activity and is generated from the
industry8 property of DBPedia. The over 17,5009

distinct ”industries” are normalized via a custom
mapping we have developed in an iterative man-
ner guided by the taxonomy’s commercial appli-
cability. The end result is a multi–level hierar-
chy but the experiments described in this paper
concern only the 32 top-level classes. For exam-
ple, the organization ”Bulgaria Air”10 is, accord-
ing to DBPedia, an Airline11, which according to
our mapping is a sub-industry of Air Transport12,
itself a sub-industry of Transport13, the top-level
industry in our mapping. Note that, some organi-
zations, such for example, the ”East Japan Rail-
way Company”14 are directly classified the top-
level industry. As is visible in Table 1, the largest
classes have well over ten thousand positive exam-
ples while many of the smallest have much fewer
than a thousand.

4 Experiments and Results

To compare the performance of the methods dis-
cussed, we trained a series of algorithms on the
same split of our data to get comparable results.
We randomly split the training data into three
roughly equal parts that were used to carry out
three-fold cross validation. In each fold, 60% of
the data was used as training data, 7% as valida-

6https://gitlab.ontotext.com/
trainings/global_datathon/blob/master/
data/dt18-ontotext-simple.csv.zip

7In Wikipedia the abstracts are the short descriptions be-
tween the title and the table of contents of the article

8http://dbpedia.org/ontology/industry
9DBpedia is rather noisy, over 12,000 of these values are

hapaxes
10http://dbpedia.org/resource/Bulgaria_

Air
11http://dbpedia.org/resource/Airline
12http://dbpedia.org/resource/Air_

Transport
13http://dbpedia.org/resource/Transport
14http://dbpedia.org/resource/East_

Japan_Railway_Company

https://gitlab.ontotext.com/trainings/global_datathon/blob/master/data/dt18-ontotext-simple.csv.zip
https://gitlab.ontotext.com/trainings/global_datathon/blob/master/data/dt18-ontotext-simple.csv.zip
https://gitlab.ontotext.com/trainings/global_datathon/blob/master/data/dt18-ontotext-simple.csv.zip
http://dbpedia.org/ontology/industry
http://dbpedia.org/resource/Bulgaria_Air
http://dbpedia.org/resource/Bulgaria_Air
http://dbpedia.org/resource/Airline
http://dbpedia.org/resource/Air_Transport
http://dbpedia.org/resource/Air_Transport
http://dbpedia.org/resource/Transport
http://dbpedia.org/resource/East_Japan_Railway_Company
http://dbpedia.org/resource/East_Japan_Railway_Company


1172

tion data to determine when to stop training and
33% was used as the test data shown to the algo-
rithm only after training is complete. The results
reported here are the cumulative performance of
the algorithms trained on each fold so each entry
in the dataset has been seen as a testing example
by one fold one time.

4.1 Linear Baseline

Serving as a baseline, we have a straightforward
linear model- a perceptron with no hidden lay-
ers. The company descriptions are first processed
through a standard NLP pipeline for stopword re-
moval and stemming and then each unigram is
converted into a one-hot vector representation15.
The input for the perceptron is the sum of the uni-
gram vectors.

4.2 Customized Linear Model

The second approach is a customized linear
model. It utilizes the same NLP preprocessing of
the text and feeds into the same linear perceptron
but the features include unigrams and bigrams.
Each feature is still represented as a one hot vector
as in the baseline model.

4.3 GloVe

The third approach serves as a baseline attempt
for incorporating context vectors. It uses the
same preprocessing steps as the linear baseline ap-
proach (i.e. NLP pipeline for stopword removal
and stemming, resulting text is processed into uni-
grams) but instead of one–hot vectors, GloVe vec-
tor embeddings are used. Specifically the 300-
dimensional GloVe vectors trained on the large
Common Crawl corpus of 840 billion tokens with
a vocabulary of 2.2 million words. While there
is no additional training of the GloVe embeddings
for our specific data, the corpus used to extract
context is many orders of magnitude greater than
our text data.

The resulting vectors are once again fed into a
linear perceptron but because the 300-dimensional
resulting vector is much smaller than the one-hot
representation in the first two experiments, this
approach had much lower training times than the
other examined alternatives. Training times were
generally under a minute instead of 15-60 minutes.

15binary vectors that are all zero values except for the index
corresponding to the word or ngram

4.4 ULMfit
Finally, we tested one of the state of the art al-
gorithms for classification with context vectors-
ULMfit(Howard and Ruder, 2018) by fast.ai16.
This is the most sophisticated of the four ap-
proaches and the one that varies the most from the
initial three.

The first major distinguishing aspect of this ap-
proach is the text preprocessing. Rather than the
traditional NLP stemming pipeline feeding into
one-hot vectors, we use all available company de-
scriptions in order to train a fully custom Lan-
guage Model based on AWD-LSTM which pro-
duces our context vectors directly. For the pur-
poses of these experiments, we used the default
settings for the network but there is significant op-
portunity for in-depth exploration of the language
model’s performance with various configurations.

The classification training step is implemented
as an additional layer added onto an already
trained language model. The effect allows rela-
tive quick initial training of the context vectors fol-
lowed by some fine-tuning of the context vectors
along the specific classification layer training.

5 Discussion

To compare the performance of the four experi-
ments, let’s first look at the class-by-class break-
down of their performance as shown in Table 1.
There we can see the F1-score achieved by each
algorithm on each of the 32 industries. The second
column of the table shows the number of compa-
nies of that class and we can see there is a very big
discrepancy- from over 76 thousand for the largest
class to barely 300 for the smallest class. We can
similarly observe that the algorithms achieve good
results on the larger classes but their performance
degrades and becomes increasingly erratic on the
smaller classes.

Looking through the data we can make several
other observations. Each algorithm has at least
a few classes where they get very poor results
and several classes where they achieve the high-
est results. The difference in results is generally
inversely proportional to the size of the class al-
though there are some notable exceptions e.g. the
bigram linear model significantly underperforms
on the 3rd and 4th largest classes. Overall it is not
possible to identify a clearly superior algorithm

16https://github.com/jannenev/
ulmfit-language-model

https://github.com/jannenev/ulmfit-language-model
https://github.com/jannenev/ulmfit-language-model


1173

Industry Size hot-unigram hot-bigram GloVe ULMfit
Entertainment and publishing 76309 0.98 0.98 0.96 0.98
Education 55221 0.98 0.98 0.97 0.99
Travel and sport 44768 0.99 0.68 0.90 0.98
Public sector 26391 0.97 0.63 0.98 0.97
Information technology 10255 0.82 0.97 0.67 0.80
Transport 10007 0.86 0.99 0.79 0.93
Manufacturing 7757 0.93 0.93 0.72 0.66
Financial services 6086 0.79 0.87 0.61 0.86
Retail 4464 0.72 0.84 0.66 0.67
Food and Beverage 3748 0.64 0.83 0.59 0.83
Nonprofit organization 3655 0.67 0.69 0.68 0.83
Personal and household goods 3206 0.70 0.76 0.96 0.60
Automotive 2564 0.77 0.78 0.46 0.76
Telecommunications 2500 0.89 0.67 0.73 0.74
Aerospace and defense 2425 0.69 0.62 0.76 0.63
Engineering 1758 0.30 0.80 0.84 0.27
Utility 1599 0.46 0.52 0.86 0.68
Commercial and professional services 1268 0.61 0.49 0.53 0.07
Fossil fuel 1213 0.74 0.54 0.74 0.75
Cultural heritage 1139 0.69 0.76 0.48 0.90
Pharmaceuticals and life sciences 1062 0.81 0.71 0.72 0.76
Real estate 920 0.52 0.46 0.41 0.64
Healthcare 915 0.48 0.75 0.57 0.51
Marketing 902 0.44 0.53 0.54 0.36
Conglomerate (company) 780 0.73 0.74 0.81 0.06
Construction and materials 764 0.42 0.72 0.50 0.28
Mining 665 0.72 0.91 0.66 0.69
Justice and law 577 0.54 0.90 0.72 0.91
Chemical industry 526 0.56 0.47 0.48 0.15
Agriculture 359 0.32 0.53 0.39 0.19
Forest and paper 328 0.88 0.36 0.39 0.22
Metal 302 0.45 0.37 0.88 0.25

Table 1: Class-by-class comparison of F1 scores between the four algorithms

hot-unigram hot-bigram GloVe ULMfit
Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1

Micro 0.943 0.901 0.922 0.944 0.909 0.926 0.913 0.899 0.906 0.956 0.888 0.921
Macro 0.788 0.625 0.689 0.786 0.658 0.712 0.700 0.674 0.686 0.861 0.572 0.641

Table 2: Comparison of overall performance between the four algorithms

by looking at the individual classes although it is
worth noting that the bigram linear model perfor-
mance degraded on some of the largest classes.

If we turn our attention to Table 2, we can ex-
amine a micro and macro view of the algorithm
performance. The micro-average is obtained by
summing up each individual decision of the algo-
rithm while the macro-average is obtained by av-
eraging the scores for each class. The first obser-
vation here is that the macro-average recall of the
ULMfit is particularly low which makes its macro-
average F1 score similarly lower than the others.

However, because of the huge class size imbal-
ance demonstrated in Table 1, the macro-average
is a poor metric for our particular problem. The
conclusion we can draw from this is that ULMfit
has achieved some abysmal recall on the smallest
classes; a likely cause for this is the lack of stem-
ming in the language model used.

Looking to the micro-averages, the algorithms
have achieved much closer performance. The
GloVe linear approach is the only one falling sig-
nificantly behind in F1-score while the hot-bigram
model narrowly achieves the best F1-score. To



1174

that end there is a clear trade-off, however, with
the ULMfit approach having the higher precision
while the ngram linear models achieve better re-
call. As already mentioned, this better recall is
likely caused by the stemming in the NLP pipeline
which the ULMfit context vectors cannot over-
come with the limited size of the corpus.

6 Conclusion and Further Work

The analysis of the results shows that all of the
tested approaches produce relatively close results
with none emerging as clearly superior to all the
others. Overall we observed that ULMfit achieves
higher precision while one-hot vector linear mod-
els achieve better recall. The linear GloVe vec-
tor algorithm achieved inferior results to the other
three options overall.

The analysis also shows that the different mod-
els have surprisingly varying behavior on the
smaller classes indicating that there is still room
for improvement in the scores achieved for those
smaller classes. ULMfit, while giving comparable
results to the linear approaches, presents the best
opportunity for that improvement.

There are a few viable directions for exploring
further improvement in the performance of the al-
gorithm. One approach would be to work towards
improving the reliability of the language model by
testing the effect of various parameters or begin-
ning with already trained embedding vectors that
are only fine-tuned on our corpus. An alternative
direction of experimentation would be to look at
the data itself- we know it isn’t a true gold standard
and expect a relatively large rate of error so it is
possible that many of the algorithm ”mistakes” are
actually errors in the underlying data rather than of
the algorithms themselves.

Acknowledgements

The research presented in this paper is partially
funded by project The Intelligent Matching and
Linking of Company Data project (CIMA), grant
BG16RFOP002-1.005-0168-C01 by the European
Unions European Regional Development Fund
through Operational Programme Innovations and
Competitiveness 2014-2020 call Intelligent Spe-
cialization. We are grateful to anonymous review-
ers for useful comments and suggestions.

References
Charu C Aggarwal and ChengXiang Zhai. 2012. A sur-

vey of text classification algorithms. In Mining text
data, Springer, pages 163–222.

Khadija Mohammad Al-Aidaroos, Azuraliza Abu
Bakar, and Zalinda Othman. 2010. Naive bayes
variants in classification learning. In 2010 In-
ternational Conference on Information Retrieval
& Knowledge Management (CAMP). IEEE, pages
276–281.

Zihang Dai, Zhilin Yang, Yiming Yang, William W
Cohen, Jaime Carbonell, Quoc V Le, and Ruslan
Salakhutdinov. 2019. Transformer-xl: Attentive lan-
guage models beyond a fixed-length context. arXiv
preprint arXiv:1901.02860 .

Yan Dang, Yulei Zhang, and Hsinchun Chen. 2009.
A lexicon-enhanced method for sentiment classifi-
cation: An experiment on online product reviews.
IEEE Intelligent Systems 25(4):46–53.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805 .

Eibe Frank and Remco R Bouckaert. 2006. Naive
bayes for text classification with unbalanced classes.
In European Conference on Principles of Data Min-
ing and Knowledge Discovery. Springer, pages 503–
510.

Alexander Genkin, David D Lewis, and David Madi-
gan. 2007. Large–scale bayesian logistic regression
for text categorization. Technometrics 49(3):291–
304.

Rayid Ghani. 2000. Using error-correcting codes for
text classification. In ICML. pages 303–310.

Eui-Hong Sam Han, George Karypis, and Vipin Ku-
mar. 2001. Text categorization using weight ad-
justed k-nearest neighbor classification. In Pacific-
asia conference on knowledge discovery and data
mining. Springer, pages 53–65.

Fouzi Harrag, Eyas El-Qawasmeh, and Pit Pichappan.
2009. Improving arabic text categorization using
decision trees. In 2009 First International Con-
ference on Networked Digital Technologies. IEEE,
pages 110–115.

Jeremy Howard and Sebastian Ruder. 2018. Universal
language model fine-tuning for text classification.
arXiv preprint arXiv:1801.06146 .

Thorsten Joachims. 1998. Text categorization with
support vector machines: Learning with many rel-
evant features. In European conference on machine
learning. Springer, pages 137–142.

Rie Johnson and Tong Zhang. 2016. Super-
vised and semi-supervised text categorization us-
ing lstm for region embeddings. arXiv preprint
arXiv:1602.02373 .



1175

Ryan Kiros, Yukun Zhu, Ruslan R Salakhutdinov,
Richard Zemel, Raquel Urtasun, Antonio Torralba,
and Sanja Fidler. 2015. Skip-thought vectors. In
Advances in neural information processing systems.
pages 3294–3302.

Kamran Kowsari, Kiana Jafari Meimandi, Mojtaba
Heidarysafa, Sanjana Mendu, Laura Barnes, and
Donald Brown. 2019. Text classification algorithms:
A survey. Information 10(4):150.

John D. Lafferty, Andrew McCallum, and Fernando
C. N. Pereira. 2001. Conditional random fields:
Probabilistic models for segmenting and labeling se-
quence data. In Proc. of the Eighteenth Interna-
tional Conference on Machine Learning. Morgan
Kaufmann Publishers Inc., pages 282–289.

Wei-Hao Lin and Alexander Hauptmann. 2002. News
video classification using svm-based multimodal
classifiers and combination strategies. In Proceed-
ings of the tenth ACM international conference on
Multimedia. ACM, pages 323–326.

Andrew McCallum, Kamal Nigam, et al. 1998. A com-
parison of event models for naive bayes text classi-
fication. In AAAI-98 workshop on learning for text
categorization. Citeseer, volume 752, pages 41–48.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781 .

Kamal Nigam, John Lafferty, and Andrew McCallum.
1999. Using maximum entropy for text classifica-
tion. In IJCAI-99 workshop on machine learning
for information filtering. volume 1 (1), pages 61–67.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 confer-
ence on empirical methods in natural language pro-
cessing (EMNLP). pages 1532–1543.

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. arXiv preprint arXiv:1802.05365 .

Jason DM Rennie and Ryan Rifkin. 2001. Improv-
ing multiclass text classification with the support
vector machine. In Series/Report no. AIM-2001-
026CBCL-210. http://hdl.handle.net/1721.1/7241.

Devendra Singh Sachan, Manzil Zaheer, and Ruslan
Salakhutdinov. 2019. Revisiting lstm networks for
semi-supervised text classification via mixed objec-
tive function. In AAAI 2019.

Songbo Tan. 2006. An effective refinement strategy for
knn text classifier. Expert Systems with Applications
30(2):290–298.

Bruno Trstenjak, Sasa Mikac, and Dzenana Donko.
2014. Knn with tf-idf based framework for text cat-
egorization. Procedia Engineering 69:1356–1364.

Qizhe Xie, Zihang Dai, Eduard Hovy, Minh-Thang Lu-
ong, and Quoc V Le. 2019. Unsupervised data aug-
mentation. arXiv preprint arXiv:1904.12848 .

Baoxun Xu, Xiufeng Guo, Yunming Ye, and Jiefeng
Cheng. 2012. An improved random forest classifier
for text categorization. JCP 7(12):2913–2920.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Ruslan Salakhutdinov, and Quoc V Le.
2019. Xlnet: Generalized autoregressive pretrain-
ing for language understanding. arXiv preprint
arXiv:1906.08237 .

Seongwook Youn and Dennis McLeod. 2007. A com-
parative study for email classification. In Advances
and innovations in systems, computing sciences and
software engineering, Springer, pages 387–391.

http://hdl.handle.net/1721.1/7241
http://hdl.handle.net/1721.1/7241
http://hdl.handle.net/1721.1/7241
http://hdl.handle.net/1721.1/7241

