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Abstract

The processing of medical information
is not a trivial task for medical non-
experts. The paper presents an artificial
assistant designed to facilitate a reliable
access to medical online contents. In-
teractions are modelled as doctor-patient
Question Answering sessions within a pre-
operative patient education scenario where
the system addresses patient’s information
needs explaining medical events and pro-
cedures. This implies an accurate medical
information extraction from and reason-
ing with available medical knowledge and
large amounts of unstructured multilingual
online data. Bridging the gap between
medical knowledge and data, we explore
a language-agnostic approach to medical
concepts mining from the standard termi-
nologies, and the data-driven collection
of the corresponding seed terms in a dis-
tant supervision setting for German. Ex-
perimenting with different terminologies,
features and term matching strategies, we
achieved a promising F-score of 0.91 on
the medical term extraction task. The con-
cepts and terms are used to search and
retrieve definitions from the verified on-
line free resources. The proof-of-concept
definition retrieval system is designed and
evaluated showing promising results, ac-
ceptable by humans in 92% of cases.

1 Introduction

Nowadays, digital online services possess the
dominant role delivering widely accessible appli-
cations at limited costs. For instance, recent tech-
nological advances make the provision of various
eHealth services feasible. Using these applica-

tions, patients can stay informed searching content
outside hospital business hours in a more conve-
nient manner. A doctor, who conducts 120,000
- 160,000 interviews in the course of a 40-year
career (Lipkin et al., 1995), meets then ‘compe-
tent’ patients who understand their medical needs
and potential consequences of medical decisions.
In the healthcare sector, language barriers and do-
main complexity may result in poor understanding
of diagnosis, low compliance with recommenda-
tions, a significantly greater likelihood of a seri-
ous medical event and lower patient satisfaction
(Bonacruz Kazzi and Cooper, 2003; Cohen et al.,
2005; Pitkin Derose et al., 2009). The mainstream
online services are therefore required to be reli-
able, accessible and to account for the diversity
in individual needs, educational backgrounds, per-
sonal preferences, cognitive and physical limita-
tions.

This paper addresses the needs in the reli-
able access to verified multilingual complex med-
ical information. As a use case, we simulate
pre-operative Question Answering (QA) sessions
between doctors and patients. As a core part
of these medical encounters, Patient Education
Forms (PEFs) need to be filled in and the patient’s
informed consent signed. It is of chief importance
that the forms are properly understood, medical
procedures and risks are explained. PEFs con-
tain many medical terms including those in Latin
and as abbreviations. These terms have to be
detected and corresponding definitions retrieved
from available electronic medical documents. Al-
though a number of biomedical entities recogni-
tion systems (Zhang and Elhadad, 2013; Björne
et al., 2013; Sahu and Anand, 2017) and med-
ical resources exist (Gurulingappa et al., 2010;
Ohta et al., 2012), they are mostly built for En-
glish. We explore a language-agnostic approach
to medical concepts mining based on the existing
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de-facto standard terminologies and dictionaries,
and the collection of the corresponding German
seed terms in a distant supervision setting. The ex-
tracted concepts and terms are used to search and
retrieve definitions from the verified online free
text sources. The proof-of-concept definition re-
trieval system is designed and evaluated.

The paper is structured as follows. In Section
2, we provide an overview of the state-of-the-art
in Biomedical Named Entity Recognition (BM-
NER). In Section 3, we discuss the conceptual
design of a medical domain. Section 4 defines
the medical term extraction task, assesses various
resources for medical information extraction and
presents the overall QA system architecture. Sec-
tion 5 proposes the experimental design by spec-
ifying the collected and simulated data, and dis-
cusses the obtained results. Finally, Section 6
summarizes our findings and outlines directions
for the future research and development.

2 Biomedical Named Entity Recognition

In 1995, the 6th Message Understanding Confer-
ence (MUC-6) focused on the Information Extrac-
tion (IE) from unstructured textual data (Grishman
and Sundheim, 1996) and defined the Named En-
tity Recognition and Classification (NERC) task,
see (Nadeau and Sekine, 2007) for a comprehen-
sive overview. The relevant entities comprised
names of persons, organizations and locations de-
fined as ENAMEX (Entity Name Expression), ex-
tended later with TIMEX (Time Expressions) and
NUMEX (Numerical Expressions).

In the early 2000s, the interest in bioinformat-
ics lead to enriching the categories with concepts
from biomedical domains focusing on the recog-
nition of biological and genetic terms, disease and
drug names and other medical or clinical entities
(Settles, 2004; Shen et al., 2003). Biomedical
named entity recognition is a key step in biomedi-
cal language processing.

Early (BM-)NER approaches were largely rule-
based detecting entities based on the observed
contextual and orthographic patterns. Such sys-
tems are especially useful if no or little training
examples are available (Sekine and Nobata, 2004),
are often straightforward to implement, suited for
the entity classes or domains where the regularities
in orthography or morphology can be exploited,
and have other important advantages (Chiticariu
et al., 2013). Although they achieve a rather high

precision, recall is often low as the rule sets are
rarely exhaustive. AbGene system of Tanabe
and Wilbur (2002) uses a POS tagger extended
to include gene and protein names as tag types.
The system was trained on the manually labelled
biomedical text. In its second iteration, it applies
manually defined post-processing rules.

Another successful approach underlies the so-
called dictionary-based systems. Here, the deci-
sion whether an entity is of an interest is made
by matching against the entries in a dictionary, i.e.
gazetteer or word list. To expand the coverage, lin-
guistic methods (e.g. stemming or lemmatization),
as well as fuzzy or exact matching strategies are
used. cTakes of Savova et al. (2010) is an open-
source information extraction tool from Electronic
Health Records (EHR) which NER component is
based on a dictionary look-up approach.

Dictionaries are also used supplementary to ma-
chine learning approaches (Tsuruoka and Tsujii,
2003), which are particularly useful if there is a
high variability in entities observed. Supervised
models like Hidden Markov Models (Zhou and
Su, 2002), Support Vector Machines (Björne et al.,
2013), Conditional Random Fields (Settles, 2004)
and Neural Networks (Sahu and Anand, 2017) are
reported to show the state-of-the-art performance.
These approaches rely on large amounts of the an-
notated training data. To perform BM-NER some
resources are created: the NCBI Disease Corpus
(Doğan et al., 2014), the GENIA corpus (Kim
et al., 2003) for molecular biology, the i2b21 cor-
pus of clinical notes. The data for languages other
than English is still an issue. Techniques which
allow to automatically generate labelled training
data like bootstrapping and distant supervision
(Mintz et al., 2009) methods are proposed to build
models in semi-supervised or weakly supervised
way. For example, Dembowski et al. (2017) ex-
tract word lists from Wikipedia to label the data
for an NER model training. The trained classifier
outperforms the simple dictionary baseline.

Unsupervised approaches do not require any la-
belled training data, but rely on external resources
like knowledge-bases or semantic nets (Alfonseca
and Manandhar, 2002), lexical patterns (Evans and
Street, 2003), and distributional semantics. Zhang
and Elhadad (2013) applied a distributional se-
mantics method to clinical notes and biological
texts. The final system yields competitive results

1https://www.i2b2.org/NLP/DataSets/

https://www.i2b2.org/NLP/DataSets/
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Category Frequency (in %) Seed Terms Examples
German English

Body-organ 19.6 Bronchien, Kopf bronchia, head
Body-related 6.5 Atem, Hören breath, hearing
Condition 4.0 gesund, schläfrig healthy, sleepy
Disease 3.1 Hepatitis, Schlaganfall hepatitis, stroke
Drug 8.0 Aspirin, Schlafmittel aspirin, sleeping pills
Effect 2.9 Wärmegefühl warm sensation
Institution 0.5 Intensivstation, Aufwachraum intensive care unit, recovery room
Instrument 7.8 Nadel, Larynxmaske needle, laryngeal mask
Person 2.5 Arzt, Pflegepersonal doctor, nursing staff
Procedure 17.6 Eingriff, Narkose intervention, narcosis
Procedure-related 2.2 intravenös, operativ intravenous, operative
Purpose 0.7 muskelentspannend, Schmerzausschaltung muscle relaxing, pain relief
Symptom 21.9 Atemnot, Juckreiz shortness of breath, itching
Misc 2.7 medizinisch, peripher medical, peripheral

Table 1: The taxonomy and distribution (relative frequencies, in %) of semantic concepts categories
illustrated with examples of German and English seed terms.

on the i2b2 biomedical dataset of clinical notes
and the GENIA corpus of biological literature,
and outperforms the dictionary-matching baseline.
This approach incorporates the collection of seed
terms. The seed term sets are gathered from exter-
nal terminologies and grouped into entity classes
that represent the domain the best. For a QA appli-
cation, it means that the classes of domain-specific
semantic concepts can be used to generate signa-
ture vectors and the semantic similarity with the
signature vectors of the answer candidates can be
computed for retrieval and ranking. The concept
classes can be also translated into the Expected
Answer Types (EATs) to query the structured or
unstructured data to retrieve an answer in a super-
vised or rule-based way.

3 Conceptual Domain Modelling

To facilitate an accurate information extraction
from and reasoning with large amounts of (un-
)structured data, it is important to specify and
model real world entities and relations between
them. This knowledge is often represented as
ontologies, terminologies with semantic concepts
groupings and taxonomic relations between them,
and semantic networks. In many knowledge-based
QA systems, high level semantic representations
are used to query databases or other types of struc-
tured data. For example, Wilensky et al. (1988)
developed the Berkeley Unix Consultant, for the
domain related to the UNIX operating system
where questions are analysed and transformed into
an internal representation which are used to gener-
ate hypothesis about the user’s information needs.
A knowledge-based QA system as used by Ap-

ple Siri2 and Wolfram Alpha3 also first builds a
query representation and then maps it to structured
data like ontologies, gazeteers, etc. The Watson a
DeepQA system of IBM Research (Ferrucci et al.,
2010) incorporates content acquisition, question
analysis, hypothesis generation, etc. Inside the
hypotheses generation, it relies on NE detection,
triple store and reverse dictionary look-up to gen-
erate candidate answers.

Alternative approaches advocate that intelligent
behaviour is a result of the processing of stim-
uli rather than symbols. Sub-symbolic modelling
is based on uninterpreted input and distributed
representations by dynamic connection weights,
e.g. Artificial Neural Networks comprise inter-
connected networks of simple processing units.
In QA, so-called Neural Question Answering cur-
rently dominates the field, see e.g. (Weston et al.,
2015). Based on neural network models, the sys-
tems involve relatively small pipeline, but require
a significant amount of annotated data.

Recently, a number of approaches have been de-
vised proposing a combination of symbolic and
sub-symbolic processing. It has been shown that
fundamental to human cognitive abilities is the ca-
pacity to process concepts which emerge from a
distributed connectionist representation at a lower
level where stimuli are processed, and are com-
bined to form symbolic structures at the highest
level to support understanding and reasoning, see
e.g. (Gärdenfors, 2004). For a QA system, it im-
plies that questions understanding and answers re-
trieval can be modelled at a higher level of seman-
tic abstraction mining key concepts from available

2http://www.apple.com/ios/siri/
3www.wolframalpha.com

http://www.apple.com/ios/siri/
www.wolframalpha.com
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(e.g. medical) taxonomies, mapping them to (parts
of) EATs, which on their turn can be used to per-
form data-driven entity recognition and semantic
relation classification tasks.

Over the past few years, the community pro-
posed different approaches to generate taxonomies
which range from flat lists of mutually exclusive
categories to hierarchical taxonomies with coarse
categories subdivided into fine-grained classes.
For example, Srihari and Li (1999) used the de-
fined MUC NER categories to derive their taxon-
omy. Kim et al. (2001) created a taxonomy for se-
mantic categorization of questions and candidate
answers based on the WordNet categories. Chuang
and Chien (2003) clustered queries with similar
information needs into groups. Hereby, higher
ranked results from web search engines were used
as features to create multi-way trees via hierarchi-
cal clustering.

Chilton et al. (2013) applied crowdsourcing
techniques to generate taxonomies based on three
Human Intelligence Tasks (HITs) where different
groups of participants: (1) generate a category for
each shown item; (2) decide which items and the
generated categories fit the best; and (3) decide for
each category whether an item fits in it or not.

The conceptual complexity of medical domains,
can make it difficult for users of information sys-
tems to comprehend and interact with the knowl-
edge embedded in those systems (Wickens et al.,
1998). To give an example, the Unified Medical
Language System (UMLS)4 integrates over 2 mil-
lion names for 900 000 concepts from more than
60 families of biomedical vocabularies, as well as
12 million relations among these concepts. The
UMLS semantic network reduces the complexity
of this construct by grouping concepts according
to the semantic types that have been assigned to
them McCray et al. (2001). Medical knowledge
bases, ontologies, standard terminologies and lex-
icons can facilitate many NLP and AI tasks, and
are exploited in this work.

4 Methodology

4.1 Medical Term Extraction: The EAT
Taxonomy and Seed Terms

Ideally, doctors want to meet competent patients
who understand their medical needs and potential

4https://www.nlm.nih.gov/research/
umls/

Source Trustworthy Available Accessible
Pschyrembel + (+) -
Wikipedia (+) + +
Wiktionary (+) + +
Roche + (+) -
MedlinePlus + + (+)

Table 2: Overview of the assessed medical online
resources. (+ stands for ‘yes’,− for ‘no’, and (+)
for ‘partially’. see Section 4.2

consequences of medical decisions, so that doc-
tors can be sure that the patient’s consent is well-
informed. It is a common practice nowadays that
before meeting a doctor who will plan an operative
medical procedures, patients often have to fill in
Patient Education Forms (PEF) to understand pro-
cedures and risks involved, and ask their doctors
more precise and in-depth questions. To model
system’s QA behaviour for our use case, the ref-
erence PEF5 was analysed to extract the domain-
specific semantic concepts and grouped them into
14 categories using the UMLS semantic network.
The form consists of 1,886 tokens, from which
448 tokens (261 unique tokens) were identified as
medical entities. Thus, in theory a patient can ask
261 question to the system requesting additional
information or explanation. The resulted taxon-
omy (Table 1) was used to annotate 64 PEFs in
German, cluster dictionary terms and to define the
EAT to classify questions and retrieve definitions
for the system’s answers.

The semantic categories were populated with
relevant seed terms. For this, the dictionary was
created using a medical word list available on
Wiktionary6. We first matched the PEFs seed
terms to the lexicon entries using dictions (i.e.
case, number), lemma, and/or stem, and enriched
it further with synonyms, hyponyms, and hyper-
nyms using the Wiktionary relations.

To improve the coverage of the proposed term
set, we augmented the list with entities from avail-
able online unstructured medical data in a distant
supervision setting. The classifiers, Naive Bayes
(NB) and Multinominal Naive Bayes (MNB),
were trained operating on different types of lexical
and linguistic (e.g. words, lemmas, stems and as-

5The form in English, German, French, Italian, Serbian
and Turkish can be found here: https://www.oegari.
at/arbeitsgruppen/arge-praeoperatives-
und-tagesklinisches-patientenmanagement/
937.html

6https://de.wiktionary.org/wiki/
Verzeichnis:Deutsch/Medizin An XML dump
of the German Wiktionary was used: https://dumps.
wikimedia.org/dewiktionary/20181001/

https://www.nlm.nih.gov/research/umls/
https://www.nlm.nih.gov/research/umls/
https://www.oegari.at/arbeitsgruppen/arge-praeoperatives-
https://www.oegari.at/arbeitsgruppen/arge-praeoperatives-
und-tagesklinisches-patientenmanagement/937.html
und-tagesklinisches-patientenmanagement/937.html
https://de.wiktionary.org/wiki/Verzeichnis:Deutsch/Medizin
https://de.wiktionary.org/wiki/Verzeichnis:Deutsch/Medizin
https://dumps.wikimedia.org/dewiktionary/20181001/
https://dumps.wikimedia.org/dewiktionary/20181001/
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signed POS tags), orthographic (e.g. capitalization
information and word length), morphological (e.g.
inflections) and contextual features where preced-
ing and following words as well there POS tags
are encoded as bi- and tri-grams.

4.2 Resources for Definition Retrieval
Users of medical QA systems want to get medical
information which is accurate, not misleading or
fake. The verified sources, in our view, need to
fulfil the following criteria:

1. Trustworthiness: the resource is accepted as
medical information source;

2. Availability: the resource is distributed un-
der non-exclusive license agreements with no
costs associated with its use;

3. Accessibility: the resource can be crawled
from the website or there are APIs available.

For example, the Pschyrembel7 is the most re-
ferred clinical German database. Although there
exists a free online test version, a license is re-
quired for a complete access. The website can not
be crawled. Pschyrembel is an excellent source for
medical terminology even for laymen, since the
definitions are very well explained and concise, in-
clude synonyms and an English translation.

Wikipedia8 and Wiktionary9, published by
the Wikimedia Foundation10, are freely available
databases. Generally, the Wikimedia databases
are good information sources, however can not be
considered as trusted medical resources. Both re-
sources are available in many different languages
enabling terms alignment and translation. Wik-
tionary definitions are mostly one-sentence short
explanations capturing the term meaning in gen-
eral, whereas Wikipedia often provides long and
detailed descriptions of multiple related aspects.
There are interfaces available to access the data.

Other surveyed medical resources are Roche
Lexikon Medizin11 for German and Medline-
Plus12 of the US National Institute of Health for
English. However, their trustworthiness comes
with a price, see Table 2 for a comparison.

7https://www.pschyrembel.de/
8https://de.wikipedia.org/wiki/

Wikipedia:Hauptseite
9https://de.wiktionary.org/wiki/

Wiktionary:Hauptseite
10https://wikimediafoundation.org/
11https://www.roche.de/lexikon/index.

htm?loc=www.roche.de&content=/lexikon/
suche.html

12https://medlineplus.gov/healthtopics.
html

Dataset #texts #tokens #NE
Training set
PEFs 64 55,280 7,333
Wikipedia articles 6,865 4,017,388 262,337
Full training dataset 6,929 4,072,668 263,568
Test set
PEF 1 1,886 448

Table 3: Training and test datasets.

4.3 QA System Architecture

The designed QA system consists of three core
modules performing pre/post-processing, term ex-
traction and definition retrieval. A general
overview of the system is depicted in Figure 1.

Patient’s input and available resources are pre-
processed, e.g. tokenized, segmented; language
models and (multilingual) word embeddings are
computed. As output, vectors representing ques-
tions and documents are generated.

The next step is concerned with medical enti-
ties recognition. The medical term extractor exists
in two versions (Section 5.2.1). The dictionary-
based (DB) extractor annotates tokens depending
on their presence in the dictionary. The module
takes different parameters specific for the match-
ing process such as word, dictions, lemma, stem,
and case-(in-)sensitive matching. The machine
learning (ML) classifier operates on the computed
features discussed above, applies the trained pre-
diction models and extracts the relevant entities.

To query online resources either unstructured
online contents or available medical knowledge
bases, queries are formulated containing the EAT
concepts extended with the collected (multilin-
gual) seed terms. The expanded queries are also
transformed into the signature vectors to mea-
sure the semantic similarity with the previously
computed document vectors. Multiple definitions
can be retrieved and ranked. For the genera-
tion of system’s answers, definitions can be sum-
marized (Hardy et al., 2002), simplified or lexi-
cally/syntactically adapted, see e.g. (Wang et al.,
2016).

5 Experiments

5.1 Data

The data used in our IE experiments is of two
types: (1) dictionaries, and (2) medical free texts
as training and test data for classifiers.

https://www.pschyrembel.de/
https://de.wikipedia.org/wiki/Wikipedia:Hauptseite
https://de.wikipedia.org/wiki/Wikipedia:Hauptseite
https://de.wiktionary.org/wiki/Wiktionary:Hauptseite
https://de.wiktionary.org/wiki/Wiktionary:Hauptseite
https://wikimediafoundation.org/
https://www.roche.de/lexikon/index.htm?loc=www.roche.de&content=/lexikon/suche.html
https://www.roche.de/lexikon/index.htm?loc=www.roche.de&content=/lexikon/suche.html
https://www.roche.de/lexikon/index.htm?loc=www.roche.de&content=/lexikon/suche.html
https://medlineplus.gov/healthtopics.html
https://medlineplus.gov/healthtopics.html
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Figure 1: Proposed QA system architecture. From left to right: patient’s questions and available medical
documents are processed. Medical terms are extracted using available concepts taxonomies, terminolo-
gies, medical dictionaries and are learned from the annotated data. Concepts and terms are mapped to
the EAT to formulate and expand the query. Signature vectors for questions and answer candidates are
computed. The verified (un-)structured data/knowledge sources are queried to retrieve definitions which
are ranked and post-processed before returning to the patient.

Dictionary comprises the initial word list of
2,035 Wiktionary medical term entries.13 The
word list covers different fields of medical work
from general medicine to dentistry, and contains a
mix of Latin and German names of medical pro-
cedures, tools and events. We augmented this
list with the Wiktionary technical terms14 and
Wikipedia medical terms15. The resulting cleaned
term list comprises 12,711 terms, see Table 4.

Word list #terms P R F1
Wiktionary medical 2035 0.947 0.120 0.213
Wiktionary medical
+ technical 2485 0.949 0.125 0.220*

Wikipedia medical 11041 0.928 0.285 0.436*
Complete list 12711 0.915 0.312 0.465*

Table 4: Results of word list experiments. Here
and in the further Tables, P stands for precision, R
- for recall, F1 - for F-scores. *differs significantly
from the baseline obtained on the smallest word
list according to the McNemar’s test, α < 0.05

The training data consists of the 64 online
PEFs and 6,865 Wikipedia articles16 extracted
with the Wikipedia term list. The test data as de-
scribed above was constructed from a single PEF,
see Table 3 for details.

13https://de.wiktionary.org/wiki/
Verzeichnis:Deutsch/Medizin

14https://de.wiktionary.org/
wiki/Verzeichnis:Deutsch/Medizin/
Fachwortliste

15https://de.wikipedia.org/wiki/Portal:
Medizin/Index

16The Wikipedia articles dump of September 10,
2018 https://dumps.wikimedia.org/dewiki/
20181001/ was used.

5.2 Results
5.2.1 Medical NE Recognition
We conducted: (1) the dictionary-based, and (2)
machine learning NER experiments. For evalua-
tion, the standard metrics of precision, recall, and
F-scores were used. The McNemar’s tests were
performed to measure statistical significance (Mc-
Nemar, 1947).17

Relation depth:
synonym,hypernym,hyponym P R F1

0,0,0 0.92 0.31 0.47
0,0,1 0.93 0.41 0.57*
1,1,1 0.85 0.48 0.61*
1,1,2 0.85 0.48 0.61*
3,2,2 0.63 0.48 0.55*
2,2,3 0.76 0.48 0.59*
3,1,1 0.63 0.48 0.55*

Table 5: Results of the dictionary-based experi-
ments: the assessment of the relation depth levels.
*differs significantly from the baseline 0,0,0 set-
ting according to the McNemar’s test, α < 0.05

Dictionary-based (DB) term recognition ex-
periments were performed in two steps. First,
the dictionary was gradually expanded to improve
its coverage. We evaluated the performance us-
ing the word lists compiled from Wiktionary med-
ical terms and technical medical terms, Wikipedia
medical terms and combinations of those. Fur-
ther, we experimented with the depth of Wik-

17The null hypothesis for our tests states that two algo-
rithms, applied to the same data, retrieve the same results.
The test statistic has a distribution of χ2 with one degree of
freedom. A significance level of α = 0.05 was set.

https://de.wiktionary.org/wiki/Verzeichnis:Deutsch/Medizin
https://de.wiktionary.org/wiki/Verzeichnis:Deutsch/Medizin
https://de.wiktionary.org/wiki/Verzeichnis:Deutsch/Medizin/Fachwortliste
https://de.wiktionary.org/wiki/Verzeichnis:Deutsch/Medizin/Fachwortliste
https://de.wiktionary.org/wiki/Verzeichnis:Deutsch/Medizin/Fachwortliste
https://de.wikipedia.org/wiki/Portal:Medizin/Index
https://de.wikipedia.org/wiki/Portal:Medizin/Index
https://dumps.wikimedia.org/dewiki/20181001/
https://dumps.wikimedia.org/dewiki/20181001/
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Setting P R F1
baseline 0.855 0.477 0.611
+diction 0.810 0.635 0.712*
+lemma 0.787 0.666 0.721*
+stem 0.807 0.641 0.715*
-case 0.847 0.481 0.614
+diction -case 0.802 0.639 0.711*
+lemma -case 0.789 0.673 0.726*
+stem -case 0.713 0.657 0.684*
+diction+lemma
+stem-case 0.703 0.679 0.691*

Naive Bayes 0.639 0.670 0.653
Multinominal Naive Bayes 0.853 0.859 0.851*

Table 6: Results of the dictionary-based exper-
iments assessing of various matching strategies
with relation depth 1,1,1 (best results) and the
classification performance. *differs significantly
from the baseline according to the McNemar’s
test, α < 0.05

tionary synonyms, hypernyms and hyponyms rela-
tions. For example, a depth of 2 in the hypernym
relation means that the hypernym of the word, and
the hypernym of the hypernym is added to the dic-
tionary.

Subsequently, different matching strategies
were tested tuning parameters like lemma, stem
and different inflections types and combinations of
those. The matching was also conducted in case-
sensitive and case-insensitive setting.

From the results presented in Table 4 can be ob-
served that larger dictionaries result in a better sys-
tem performance in terms of higher F-scores. The
expanded dictionary coverage leads to a higher re-
call, as more relevant terms can be found. The
precision, by contrast, drops slightly when larger
dictionaries are used, due to the larger amount of
false positives. For our use case, we assume that
the system’s acceptance will depend on its ability
to explain as many terms as possible than missing
many relevant of them.

In the second set of experiments, we assessed
the impact of the relation depth on the term ex-
traction performance. As Table 5 shows that
encoding the relation information of 1,1,1 and
1,1,2 types resulted in the best performance (F-
scores of 0.611). We concluded that recall in-
creases with the increased relation depth. Deeper
relations, however, generate more out-of-domain
terms causing the precision drop. For example,
the further up the hypernym relation gets, the more
general the terms become. Considering synonyms
of all word senses introduce further noise in the
training data, e.g. the German word ‘Nase / nose’
is also a fish and the synonym list does not only

Features P R F1
word 0.875 0.879 0.876
+POS 0.876 0.880 0.877
+Suffix 0.879 0.882 0.879*
+Prefix 0.882 0.885 0.883*
+nextBigramPOS 0.877 0.880 0.877
+prevBigramPOS 0.879 0.882 0.880*
Best features 0.909 0.909 0.909*

Table 7: Classification performance on different
feature sets. Note: only features that improved
the previously obtained results are reported here.
*differs significantly from the word baseline ac-
cording to the McNemar’s test, α < 0.05

contain ‘Riechorgan / olfactory organ’ or ‘Zinken
/ beak’, but also ‘Näsling / common nase’, which
is a kind of carp and is unlikely to occur in PEFs.

In the final dictionary experiments, we assessed
the impact of the word-based matching strategies.
The experiments showed that using lemmas and
case-insensitive strategies yielded the best results.
The best overall F-score of 0.726 was achieved us-
ing the complete Wikipedia and Wiktionary word
list, a relation depth set to 1,1,1 for synonyms, hy-
pernyms, and hyponyms respectively, lemmatis-
ing and ignoring capitalizations in the input. The
performance of the best dictionary-based extrac-
tor outperforms the Wiktionary medical baseline
by broad margins, compare Tables 4 and 6.

For our machine learning (ML) experiments,
we generated the training data using the distant
supervision approach and the best version of the
dictionary-based extractor. The MNB classifier
outperformed the NB classifier by broad margins,
achieving F-scores of 0.85 comparing to 0.65, con-
sider two last rows of Table 6.

Finally, the impact of different feature combi-
nations on the classifier performance was evalu-
ated. For this, each feature was tested individu-
ally in combination with the word feature. Results
showed that only few features contributed to the
improvement of the overall classification perfor-
mance, see Table 7 for an overview. The best fea-
ture combination was found to be a combination
of word features and POS information of previous,
current and next word, as well as the morphologi-
cal information concerning prefixes and suffixes.

Our experiments showed that the built classi-
fiers outperformed the dictionary-based extractors.
The overall F-scores improvement of 0.183 was
achieved. More importantly, the recall was dras-
tically improved from 0.236 (dictionary baseline)



1353

Dictionary-based NE recognition Machine-learning based NE recognition
Configuration F1 Configuration F1
Baseline: Wiktionary medical data 0.213 Baseline: PEF training data 0.851
Best Lexicon: Wikipedia & Wiktionary data 0.465 Best training data: PEF & Wikipedia articles 0.876
Best relation depth: 1,1,1 0.611 Best feature pair: word+prefix 0.883
Best matching strategy: +lemma, -case 0.726 Best feature combination: word, +POS trigram, +inflexion 0.909

Table 8: Summary of the best obtained results for medical entities extraction.

Source # retrieved definitions # accepted definitions
(in % of all PEF terms) (in % of all retrieved)

Wiktionary 133 (51.0) 123 (92.4)
Wikipedia 124 (47.5) 93 (75.0)
Both resources 134 (51.3) 123 (92.4)

Table 9: Coverage and quality of the retrieved
Wiktionary and Wikipedia definitions.

and from 0.673 (best dictionary-based system) to
0.909 of the best classification model. Table 8
summarizes the key experimental results.

5.2.2 Definition Retrieval
The proof-of-concept definition retrieval was im-
plemented using Wiktionary and Wikipedia re-
sources that contain clear understandable defi-
nitions and are available in many different lan-
guages. The methods developed for German and
English can be used for many other languages.

On a technical note, the Wikipedia and Wik-
tionary APIs are available to retrieve the summary
part of the corresponding Wikipedia article, and
the sense of Wiktionary. Coverage of the refer-
ence PEF medical terms and the quality of the re-
trieved definitions were evaluated.

Both resources covered 51.3% of the annotated
PEF terms: 47.5% for Wikipedia and 51.0% for
Wiktionary. The retrieved definitions were eval-
uated on their acceptability: whether the defini-
tion is correct, clear and sufficient. The evalua-
tion was performed by three human raters. Out of
the 133 Wiktionary definitions, 123 (92.4%) defi-
nitions were evaluated as acceptable: wording and
sentence structure were simple, i.e. not contain-
ing other complex terminology and more than one
subordinate clause. The retrieved Wikipedia defi-
nitions were, by contrast, evaluated as less accept-
able: multi-sentence definitions are frequent with
complex sentence structures using other medical
expressions. The assessment results for the def-
inition coverage and quality from the respective
sources can be found in Table 9.

6 Conclusions and Future Work

In this paper, we addressed medical terms and
definitions extraction simulating Patient Educa-

tion QA sessions. We assessed two core methods
to medical terms extraction: based on the stan-
dard medical terminologies and available dictio-
naries, and applying a machine-learning approach
to extract German seed terms in a distant super-
vision setting expanding the system’s coverage.
We also proposed criteria to test and select med-
ical resources for a QA application. A proof-
of-concept definition retrieval systems was imple-
mented and evaluated. The work contributes to a
closed-domain QA system design to facilitate ac-
cess to verified multilingual medical information.

The baseline DB and ML-based extraction tech-
niques are assessed considering various dictionar-
ies/datasets sizes, word matching strategies and
different feature combinations. The distant super-
vision is a viable method to overcome the shortage
of manually annotated monolingual data and can
be successfully applied to automatically and pro-
ductively generate large sets of the annotated mul-
tilingual seed terms. The proposed term-based in-
formation extraction opens perspectives for multi-
and cross-lingual QA application design. The con-
cepts categories populated with terms in multiple
languages enable cross-lingual mappings. If the
language is available on Wiktionary, the relational
connections can be used as well.

Our future work will pursue multiple goals. To
improve the quality, a larger annotated corpus for
German will be collected. Larger data sets will
also allow to train machine learning classifiers
on noisy labelled data. Different search and re-
trieval methods will be explored, i.e. based on
machine translation, cross-lingual language mod-
els and multilingual embeddings. In particular, we
are interested in training new neural networks in
multi- and cross-lingual term extraction and defi-
nition retrieval settings. We also plan to invest into
the adaptation and simplification of the retrieved
definitions where the complex medical terms will
be translated into common terms. This can be
achieved in a dictionary-based setting augmenting
seed terms collections, but also defining the task
as a machine translation one.
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